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An analysis of flow visualization using small reflective flakes is introduced. This 
rational analysis is based on a stochastic treatment of Jeffery’s (1922) solution for 
the motion of ellipsoidal particles in a viscous fluid, wherein thin flakes tend to align 
with stream surfaces. The predicted light fields are confirmed by examples of parallel 
flows, the flow over a rotating disk, and the spinup from rest in a cylindrical cavity. 
The Tollmien-Schlichting wave packet trailing a turbulent spot is taken as an 
example to discuss the suitability of the technique for visualizing small-amplitude 
waves. Attenuation of light through a suspension is described. 

1. Introduction 
A few pleasant moments spent leafing through Van Dyke’s (1982) album should 

be enough to convince anyone of the power of flow visualization in unveiling the 
beauties of fluid flow. The flow field reveals itself through either some changes of the 
properties of fluid as it flows or some visualization agents introduced into it. Of the 
numerous individual techniques, visualization through the use of small reflective 
flakes, such as aluminium flakes, titanium-dioxide-coated mica platelets, or fish flakes, 
seems to be least understood. The commonly quoted view that such flakes align 
themselves along the axes of principal normal stresses in the flow field is unsub- 
stantiated (see, for example, Carlson, Widnall & Peeters 1982). The purpose of this 
article is to present a rational analysis of the nature of flow visualization using such 
flakes. Examples are presented to demonstrate the applicability of the analysis. 

The analysis is based on Jeffery’s solution of the motion of ellipsoidal particles 
immersed in a viscous fluid. This solution has been experimentally verified by 
Goldsmith & Mason (1962). Greenspan, in an appendix published by Weidman (1976), 
uses this solution to estimate the response time of aluminum flakes during spinup 
in a, cylindrical cavity. Weidman further concludes that both velocity and its time 
derivative are vanishingly small when aluminum flakes first sense the approaching 
disturbance. No other quantitative treatment of the technique appears to be 
currently available in the literature. 

2. Principle of visualization 
2.1. Flake in jlow field 

An individual flake is idealized as a thin buoyant circular disk of a suitably defined 
thickness-to-diameter ratio p. Its normal unit vector n is used to specify its 
orientation in space. Let the flake be at the origin 0 of the (z, y, z)-coordinate system 
(figure 1). The Euler angles of n are 0 and q5. Let a uniform light beam come from 
L and an observer be at C. Let the unit vectors n, = (l ,m,n)l ,  n = ( l ,m,n) ,  and 
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FIGURE 1.  Reflective flake in shear flow. Reference system and visualization geometry. L, light 
source, 0, flake, C, camera. Note that 4 is measured in zy plane between y axis and projection 
of n. 

nc = (1,  m, n), describe the relative orientations of the light source, the flake, and the 
observer; where I, m and n are the direction cosines with respect to the x, y, and z 
axes. Note that n = (sin 0 sin 4, sin 0 cos 4, cos 0). Assuming the flake to be perfectly 
flat with negligible diffraction and the observer to be a pinhole camera, then the 
normal vector of the flake n has to be the bisector of the angle LOG' in order for the 
observer to see the reflected light. This geometric requirement leads to a unique 
relationship between the direction cosines of the three vectors, 

and 

(n1+ nJ2 
(Zl+Z,)2+(m,+m,)2+ (nl+nc)2 

cos2e* = 

(m1+ cos2$* = 
(Z1 + Z,)2 + (ml + rn# ' 

where (*) labels the condition when the observer sees light. 
Consider the flake with a velocity field U in an inertial coordinate system. Apart 

from the disturbance produced in the immediate neighbourhood of the flake, assume 
the flow field varies on a spatial scale that is large compared to the dimensions of 
the flake. Consequently, the Reynolds number for the flake is small and it assumes 
the translation velocity appropriate to that part of the replaced fluid. This velocity 
U, is sensibly uniform, and the centre of the particle may therefore be taken as the 
origin of an inertial coordinate system. Let the xyz-coordinate system be such an 
inertial reference frame. The undisturbed field in the vicinity of the flake can be 
approximated as (Batchelor 1967) 

ui = e i ix i+@ x x, 

where u = U- U,, and eii, w ,  and x are the rate-of-strain tensor, vorticity, and the 
position vectors, respectively. A parallel flow is chosen because the equations 
governing the motion of the disk can be integrated analytically (Jeffery), 

(u, v, w )  = 144 y, 0901, (3) 
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where the coefficient K may depend on time (figure 1). The timescale of the flow is 
assumed to be smaller than that of the randomizing effects of the Brownian motion 
on the flakes. The corresponding strain-rate tensor and vorticity vector are 

and 0 = ( O , O ,  - K ) .  

The principal axes of strain is arrived at by rotating the xyz system 4.5' around the 
z axis. 

2.2. Motion of a flake 
Under the assumptions already stated, the motion of the flake is described by the 
following equations derived by Jeffery 

1 -p2 

dt 1 +p2 
+(t) - sin 28 sin 24 

dB -= 

and 

The initial conditions are 
O(0) = 8, and # ( O )  = 4,. 

These equations are integrated to yield 

and 

where 

tana 8 
tan2 8, 

sin2 #o + p2 cos2 #, 
sin2 # + p2 cos2 # 

-- - 

(7) 

Hence, the orientation at time t depends only on p, S(t), and the initial Euler angles. 
Clearly, when S+O, the Euler angles remain at their initial values. 

2.3. Visualization 
Consider a large number of flakes with a uniform concentration in the flow field. While 
a deterministic approach is no longer feasible, some important statistical properties 
of the suspension can be obtained easily by using the probability-density function 
f(8, #). Flow visualization using reflective flakes is essentially a means of displaying 
f ( B , # )  optically in space and time. The correct interpretation of such visualizations 
must necessarily involve the evolution of the probability density function f(8,#). The 
essence of this article is that the initial values 0, and 6, are treated as random 
variables and 8 and q5 as functions of these two random variables, that is: 

8 = w,, $0, and 9 = #(@(I, $ 0 ) .  

The evolution of f(8, #) is described by Papoulis (1984) as 
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where fo(8,, #o) is the initial probability density function of the random variables 8, 
and #,, and J is the Jacobian a(6, #)/a(O0, 4,). It is evaluated with (5) and (6) as 

J(8,#,t) = @(cos28+Q sin2@, (8b)  

where Q(#,  t )  = (sin2 # +p2 cos2 #) (84  

and a(#, t )  = tan-' - t an#  --#(t). c ) 1 1 / 3 2  

The observer in figure 1 thus seesf(B*, #*) where 8* and #* are given by (1) and (2). 
Note that J > 0. 

Jeffery and Goldsmith & Mason describe the motion of an individual particle. The 
finite thickness of the flake p causes it to rotate and flip over. This motion is periodic 
if ~ ( t )  is constant. The flake spends most of its time near alignment with stream 
surfaces and flips over rapidly when at large angle to the flow (see figure 5 of 
Goldsmith & Mason). An observer looking at a flake in a steady shear flow under 
diffuse illumination therefore sees a smooth translation interrupted by sudden 
turnovers, as Coles (1965) observed under a microscope. In the limiting case of zero 
thickness, the motion is no longer periodic. The flake takes the unique position in 
which its faces are aligned with the stream surfaces of the undisturbed motion. It 
thus moves through the fluid edge-on with its axis at a given inclination to the shear, 
not necessarily along the principal strain directions of (4). Equation (8) then becomes 

where 

Equation (9) contains all the important features needed to describe visualizations 
in flow fields for which (3) is an acceptable local approximation. Note thatf = fo when 

Q(#,  t )  = sin2 # + [cos# + sin $ S(t)I2. (10) 

S(t)  = 0. 

3. Examples 
The following examples are presented to demonstrate the applicability of the 

principle of flow visualization developed in the preceding section. Before considering 
each case, the Brownian timescale of the flow has to be considered. Leal & Hinch 
(1971, 1972) describe the behaviour of dilute suspensions subject to Brownian 
couples. They conclude that the suspension has an exponentially fading memory with 
a characteristic timescale of (SD)-l, where D is the Brownian orientation diffusion 
coefficient. This timescale is ( 4 / 3 ~ )  ( p V / p k T )  as p+O, where p, V ,  k, and T are the 
viscosity of the fluid, the volume of a typical flake, the Boltzmann constant 
(1.380 x 10-ls erg/K), and the absolute temperature, respectively. A typical flake is - I pm thick and - 10 pm wide, thus, its volume is - 10-lo om3 and p - 0.1. The 
Brownian timescale at room temperature is - 100 s in water and - lo00 s in silicone 
oil used in the spinup example. These timescales are much larger than those of the 
respective flows so that the effect of Brownian motion during the flow can be 
neglected. 
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3.1. Parallel jlow 
Suppose the flow commences from a state where f0(8,, $o) = 1,  that is all orientations 
are equally possible resulting in a uniform light field when observed from any 
direction under any uniform illumination (f, is normalized to 47t). Such a state can 
be attained if the fluid stays in a shear-free state long enough for Brownian motion 
to randomize any nonuniformity. As the flow experiences a shearing action, the 
orientation of the flakes is described by 

It is apparent from (10) and (1 1) thatf(0, $) is vanishingly small when 8(t) + co except 
when tan2$ isnear -215. When tan2$+-2/S, f(B,$)+S/(cos2B+sinZ8/P). Thus, 
the observer sees the flakes aligned with the stream surfaces in the zz-plane, and 

f ( e , $ ) + z ~ ~ ( e - + ~ , $ )  WS+OO, (12) 

where the delta function S is introduced as a symbolic representation for the limiting 
process. If the flakes experience no shear, then f(O,$) does not change. Such cases 
are readily observable in boundary layers and channel flows. Flakes away from the 
boundary do not change their orientations while the ones undergoing shearing realign 
themselves. For example, the flakes are aligned parallel to the wall in a laminar 
boundary layer. If such a layer is illuminated with a light sheet perpendicular to the 
flow, an observer looking along the direction of the flow will see a dark band over 
the wall whose width is indicative of the local boundary-layer thickness. This width 
can be calculated from (1  1)  for the particular flow. 

The following desk-top experiment in laminar pipe flow should be helpful to 
demonstrate the validity of the arguments presented here. Suspend in a beaker of 
water some aluminium flakes or frosty eye shadow makeup which contains titanium- 
dioxide-coated mica flakes. Some detergent may be necessary to wet the flakes. Then 
slowly siphon the fluid through a clear, small-diameter plastic tubing while observing 
under a magnifying glass or a microscope the behaviour of the flakes. The orientations 
of the flakes are different along the centreline of the tubing than elsewhere. One 
notices that at the centre of the tubing the distribution of the orientations of the flakes 
hardly differs from those in the beaker [ f(e,$) x f0(8,, $,)I, while the ones away from 
the centre tend to align themselves with their normals perpendicular to the axis of 
the tubing (e++n, $ + O  in figure 1, equation (12)). 

3.2. Flow over a rotating disk : Kdrmrin jlow 
Consider the flow over a rotating disk in a quiescent fluid. The components of the 
velocity vector U in the usual cylindrical coordinates are 

( U ,  v, W )  = [rQF(v) ,  rQG(v), ( m t H ( v ) l  
with 71 = y(Q/v)i, where r,  52, u, and y are the radial coordinate, the angular velocity, 
the kinematic viscosity, and the axial coordinate, respectively. The functions F, G, 
and H are determined from equations of the flow. They are shown in figure 2 for 
reference. The corresponding strain-rate tensor is 

err ere ery 2 4 F  0 
$%$( 0 2 q F  

F G‘ 2JqH 
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FIQURE 2.KBrmPn flow ; velocity profiles, pathlines andf(O*, $*). Constant f(O*, @*) contours, 

7 = 1.13061nE;t+constant, are drawn for p = 0 (cf. Greenspan, figure 1.4). 

where E, is the local Ekman number v/Qr2.  Suppose the quiescent fluid contains 
reflective flakes in a uniform suspension withf,(B,, q5,) = 1. Let a thin sheet of light 
illuminate the flow field diametrically (through the axis of rotation). The light field 
seen by an observer looking perpendicular to the sheet can be calculated analytically 
from (8) for E, 4 1 far from the disk, and where 

(F,G,H) - (Foe-c9, Goe-cT, -c), 

with (&,,G,,c) = (0.91772,1.20211,0.88446) 

from Rogers & Lance (1960). The local flow field can be approximated by (3) with 

K = -c(q+G$QE;ie-cq, 

if the x axis is chosen along the direction of the vector ( U ,  V, 0). Note that the xyz 
coordinate system moves with the flake along the pathline (Uf = v), and its 
orientation continually changes with respect to the observer. Taking t + O  as y+ 00, 

the integral S is evaluated along a pathline as 

1 
8 = --(q+Gi)iB$e-cq. 

The observation angles are I8* 1 = in+ tan-' (Go/&,) and $* = !jn from (1) and (2). 
The final result is 

f(8*, q5*) = 2 ( q  + Gi) &-4 [ (F, - Go)2 + (4 + Go)2 &I-', 

C 

where 

Thus, constant f (B* ,  q5*) contours are logarithmic curves in the ry-plane. Note that 
the observed shape is independent of the parameters i2 and v .  Further, the visible 
width of the boundary layer is progressively thicker than the conventional boundary- 
layer thickness 5( v/Q)t.  The limiting case for p + O  is 
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FIGURE 3. Laaer-Doppler measurements of spinup from rest in right circular cylindrical cavity of 
diameter-to-height-ratio of 2RIH = 1.00. Angular velocity w/Sa of fluid elements at midheight aa 
a function of time 7 = ( 8 v / P ) i t  and radius r / R ;  SZ = 17.50 rad/s at 7.93 rad/sa, H = 21.48 cm, 
v = 0.102 cm2/s. 

Some selected contours and pathlines are plotted in figure 2. Even though the shapes 
shown in figure 2 are similar to that depicted in Greenspan's (1968) figure 1.4, a 
quantitative comparison is not possible. 

3.3. Spinup from rest 

A more convincing test of the analysis is to compare the predictions of (8) with 
measurements in a known flow field. The flow in a cylindrical cavity during spinup 
from rest is used to confirm quantitatively the principle of flow visualization using 
reflective flakes. A complete set of laser-Doppler velocimeter measurements of the 
azimuthal velocity at the midplane of the cylinder is available to the author,? as 
shown in figure 3. The flow is duplicated at the University of Oklahoma for flow- 
visualization experiments. Aluminium flakes of approximately 40 pm diameter are 
used at a concentration of about 10 mg of aluminium per litre of silicone oil. A thin 
sheet of light from a 2 W argon ion laser illuminates the cylinder diametrically 
through the axis as shown in figure 4. The camera is at a right angle to the plane 
of illumination so that 8* = in. If the cylinder has been at rest long enough, then 
fo(80,#o) = 1 and (8) reduces to 

where @* = tan-' - tan#* --S(t). c 1 l&' 

The angle $* depends on the radial coordinate T and is determined as indicated in 
figure 4. The local strain rate eZy = i [a(or) /ar-w]  is determined from the data of 

t Measurements were made in 1976 by 6. Savag and D. Coles at The Graduate Aeronautical 
Laboratories of California Institute of Technology, Pasadena, CA. 
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FIGURE 4. Visualization geometry for flow of figure 3. Note the lens effect of the cylindrical cavity. 
The refractive index of silicone oil is 1.399, R = 11.37 cm (including the wall thickness of the 
cylinder). L, sheet of laser light thinner than 1 mm, C, 35 mm camera. 

figure 3 using a second-order finite-difference scheme. This intermediate step is shown 
in figure 5 (a) in the form ~ ( t )  = 2eZy (cf. (3) and (4)), which is subsequently integrated 
to obtain S(t)  for each radial position. The end product of these calculations is the 
probability density functionf(O*, #*). The result is shown in figure 5 ( b )  for p = 0.18. 
The reason for choosing p = 0.18 is discussed below. The intensity of light coming 
from a given radial location stays nearly constant until changing conditions are felt 
by the flakes. They reorient themselves so that the amount of light coming from that 
particular location increases to a well-defined maximum value before decreasing to 
a vanishingly small level. Alternatively, at  any given instant there is a point with 
maximum light intensity. The region in front of this point is uniformly illuminated, 
while the region immediately behind it is dark. The trajectory of this first maximum 
point provides a convenient way of identifying the position of the visible front, as 
shown in figure 6. This trajectory is insensitive to the value of p within the error limits 
of the measurements. The calculations for p = 0 using (9) and (10) yield the same 
trajectory. The peaks following the dark region are due to the finite thickness of the 
flakes. Their amplitudes and trajectories are strongly dependent on p. These 
secondary peaks are harder to identify than the primary one. The first of such peaks, 
however, could be identified clearly in the flow-visualization pictures. Greenspan’s 
figure 1.4(b) is informative in explaining the important features of the flow, but 
inadequate for a test of figures 5 ( b )  and 6.  The pictures presented in figure 7, which 
are two of many, confirm figure 5 ( b ) .  All the predicted features are present. The 
observed trajectories for four realizations are shown in figure 6. The predicted 
trajectory of the first peak and the observations are indistinguishable. The value of 
p is chosen such that the first secondary trajectory from figure 5(a)  closely 
approximates the measurements shown in figure 6. Thus, a byproduct of the analysis 
and the experiments is a novel method to determine the effective thickness p of the 
flakes. 
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FIQURE 6. Trajectories of the visible peaks of light intensity; 0,  from the calculations of 
figure 5 ;  + , x measurements from photographs such as figure 7.  

3.4. Waves in high shear 
The reflective-flake flow-visualization technique seems to be rather unsuitable for the 
visualization of low-amplitude shear waves in a unidirectional high-shear flow. If the 
flow starts from a condition where fo(e0, # o )  = 1, then the evolution of the flake 
distribution is described by (1 1). During the journey the contribution to the integral 
S(t)  of (7) steadily increases. When the flakes encounter low-amplitude waves, such 
as TollmienSchlichting waves, the new contribution to the integral is extremely 
small; thus the orientation of the flakes is given by (12) with small oscillations around 
$ = 0. An alternative approach can be taken with reference to the local conditions. 
This time consider the flake distribution described by (9) wheref0(8,, $ o )  is given by 
(12). The integral S( t )  now covers the lifespan of these waves. Their effect is felt when 
$ =?= 0 because of the factor sin$. The form of fo(Oo, # o )  however inhibits any such 
effect from being observed in f ( O , # )  of (9). Given the approximate nature of the 
analysis, changes in $ are at best very small oscillations around q5 = 0. Therefore the 
optical arrangement has to be capable of seeing these small angular variations around 
$ = 0. Such an arrangement is rather demanding. 

An instructive example is provided by the wave packets observed in the presence 
of a turbulent spot. Wygnanski, Haritonidis & Kaplan (1979) reported hot-wire 
measurements of the oblique wave packets trailing a turbulent spot in a laminar 
boundary layer. Cantwell, Coles & Dimotakis (1978), who were aware of the 
preliminary results of Wynganski et al., did not notice these waves in their aluminium 
flake visualizations during their investigation of the turbulent spot. They argue that 
their Reynolds number may not have been high enough. Later, visualization studies 
by Carlson et al. in plane Poiseuille flow revealed similar wave phenomena coupled 
with the turbulent spot. They used titanium-dioxide-coated mica particles at  a low 
concentration, which allowed them to see through the full 6 mm width of their 
apparatus. Carlson et al, argue that Cantwell et al. could not have observed the waves 
because of their opaque suspension which allowed a visible depth of only 2-3 mm 
(Cantwell et aZ.). Due to the symmetry of their apparatus, however, the effective 
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FIQURE 7. Two successive photographs during spinup from rest; (a) t = 9.7 s ;  (b)  t = 13.6 s. 



246 6. S a v q  

visible depth in the Carlson et al. experiments is not 6 mm, but 3 mm, which hardly 
differs from the depth that Cantwell et al. could observe. More recently, Chambers 
& Thomas (1983) have observed these oblique waves in a boundary layer with a 
smoke-wire visualization technique a t  low Reynolds numbers that are comparable 
with those of Cantwell et al. 

The foregoing conflict is not a question of Reynolds number or of the visible depth. 
Cantwell et al. did not see any evidence of such waves because the way they 
implemented the flow-visualization technique was not suitable for that purpose. Had 
they illuminated the boundary layer at a shallow angle, almost parallel to the flow 
and observed at a shallow angle from the other side, they would have seen the oblique 
wave packet trailing the turbulent spots in their boundary layer. 

A fully developed Poiseuille flow has a parabolic velocity profile with its maximum 
at the centre where the rate of strain crosses the zero point. The flow in the vicinity 
of the centre can be approximated as a uniform translation with vanishingly small 
shear. The value of the integral S( t )  is negligible for the flakes in this region. 
Consequently, the density functionf(8, $) remains the same asfo(8,, $,), and is thus 
near unity. Away from the centre the shear continually contributes to S( t ) ,  thus 
aligning the flakes towards the distribution of (12). Within the simplifyingassumptions 
of this article, the density functionf(0, $) tends to (12), except at the centre where 
it remains as unity. When the flow experiences shear waves the density function 
responds differently in different regions of the flow. The response of the central part 
is intense enough to be observed from any direction as the dominant contribution 
to 8(t) comes from these waves. In the remainder of the flow where the shear has built 
up a large value for S(t) ,  the contribution from the waves is infinitesimal and is 
difficult to observe except under shallow illumination and observation angles. 

Carlson et aZ. 's  visualization experiment is an elegant demonstration of these 
arguments. Even though they used large quantities of flakes, the grainy look of their 
pictures leads to the impression that the flake concentration was very low. The 
information that their camera records comes mostly from the central plane of their 
apparatus where only a small fraction of the flakes are present. The remainder of the 
flakes are in high-shear regions and are already aligned as described by (12). Thus, 
most of the flakes are not participating in the visualization. As a consequence of the 
arguments presented here, if Carlson et al. illuminated the central plane of their 
apparatus with a very thin sheet of light, they would get the same quality pictures, 
or maybe even better ones, due to the reduced noise level. Conversely, if they 
illuminated the whole flow field but the central plane, their camera would record little 
or no wave activity. 

3.5. Light attenuation 
The light transmission characteristics of a suspension containing reflective flakes 
can be calculated. Suppose the observer C looks directly into the light source L 
(figure 1). The attenuation of the light intensity recorded at C can provide valuable 
information about the flow field as well as the suspension itself. A flake of area a, 
deflects a portion of the incoming light beam whose cross-sectional area is the 
projection of a, along n1 given by a = a, I n n, 1, and from 5 2.1, 

a(e,$) = a,(Z,sin8sin$+rnl sine cos$+n, cos81. 

The expected value of a is 
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where the integration is over the unit sphere and f (O,$)  is given by (8). Thus, (a) 
is the expected amount of light deflected by a flake from the direction of illumination 
which is recorded as attenuation at C. The total attenuation is obtained by 
integrating the contributions from the flakes within the path of the light beam. 

If the flake concentration is low enough, then the optical interaction among the 
flakes can be neglected. If, in addition, the suspension is uniform and the flakes are 
of the same area a,,, then the total attenuation A observed at C is an integral over 
the volume of the path of the light beam; 

A = g s ,  (a> dV, 

where N is the number of flakes per unit volume. This interpretation can help further 
understand shadowgraph pictures (see, for example, figure 14 of Coles) and aid light- 
attenuation studies in various flow configurations. 

4. Conclusions 
If the initial conditions of the equations describing the motion of an ellipsoidal 

particle in a viscous fluid are treated as random variables, then the probability 
density function of the Euler angles that describe the orientations of the flakes is 
adequate to explain the observed light field in flow-visualization experiments using 
such flakes. The flakes tend to align themselves with the stream surfaces, but their 
finite thickness causes rapid turnovers. Quantitative predictions are possible and the 
technique offers a new way of determining some flow properties as well as some 
suspension properties. This technique, however, seems to be unsuitable for visualizing 
low-amplitude waves in high shear flows, and due caution must be exercised in such 
applications. 

The author extends his thanks to D. Coles, G. Emanuel, and P. Sepri for their 
constructive comments and illuminating discussions, and to K. Williams for her 
inexhaustable patience during the preparation of the manuscript. 
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